化學(xué)工程到底有什么奧秘?
1.1專業(yè)簡介
化學(xué)工程,簡稱化工,是研究以化學(xué)工業(yè)為代表以及其他過程工業(yè)(例如石油煉制、冶金、食品及印染工業(yè)等)生產(chǎn)過程中有關(guān)化學(xué)過程與物理過程的一般原理和規(guī)律,并且應(yīng)用這些規(guī)律來解決過程及裝置的開發(fā)、設(shè)計、操作及改善問題的工程技術(shù)學(xué)科。目前全球前10強企業(yè)中有6家企業(yè)涉足化工行業(yè)。
中國和美國化學(xué)工程差別?
中國化工專業(yè):
本科學(xué)習(xí)階段更加重視理論的記憶,但是對于理論的本質(zhì)不做研究,或者沒有機會做研究。比如國內(nèi)化工學(xué)生言必稱三傳一反”但是對于三傳一反的本質(zhì),以及三傳一反”(三傳一反:熱量傳遞,動量傳遞,質(zhì)量傳遞和化學(xué)反應(yīng)過程)的數(shù)學(xué)偏微分方程的是不做過多了解的,這會導(dǎo)致無法深刻理解理論。多培養(yǎng)煉油、石油化工及相關(guān)化工領(lǐng)域人才。(中國石油大學(xué))屬于我國極少數(shù)進入世界著名的學(xué)科。其中QS世界大學(xué)專業(yè)排名中,清華大學(xué)化工名列全球12,屬于中國唯一。國內(nèi)目前大約有26000家大中化工企業(yè),提供了約707萬就業(yè)崗位。
美國化工專業(yè):
本科階段除了基礎(chǔ)課程的學(xué)習(xí),更加注重化學(xué)基本原理和本質(zhì)的學(xué)習(xí),所以對于理論基礎(chǔ)研究的比國內(nèi)更加深入。美國的化工本科會學(xué)習(xí)到三傳一反”的數(shù)學(xué)偏微分方程,也會學(xué)習(xí)到它們的數(shù)學(xué)偏微分方程形式一致,基本原理一致,而在中國的化工本科教學(xué)中大多不會涉及。
1.2常見學(xué)位及要求
Master of Science in Chemical Engineering
時長:1-2年 (28-40學(xué)分)
特點:培養(yǎng)學(xué)生掌握化學(xué)工程,工藝的知識,掌握化學(xué)裝置用法及設(shè)計方法,同時在交叉學(xué)科內(nèi)進行探索、改進、開發(fā)和設(shè)計新的方案。
Thesis: 學(xué)術(shù)導(dǎo)向
Non-thesis:職業(yè)導(dǎo)向
Master of Engineering in Chemical Engineering
時長:1-2年 (28-40學(xué)分)
職業(yè)導(dǎo)向,工程導(dǎo)向,關(guān)注技術(shù)和應(yīng)用層面,指向就業(yè),更加側(cè)重于實踐(南加大ME需要特點:完成MS課程要求且通過工程師考試)
PhD-Chemical Engineering
時長:5年 一般90學(xué)分左右
特點:學(xué)術(shù)研究導(dǎo)向,畢業(yè)后academic或industry都可以
SNEWS 給出開設(shè)化工專業(yè)的學(xué)校有110 所左右,其中有專排的90 所,雖然沒有化學(xué)專業(yè)選擇多,但是總體也是有相當(dāng)數(shù)量的學(xué)校可供選擇。絕大多數(shù)學(xué)校也是有單獨的化工專業(yè),少數(shù)學(xué)校是和生物,生化結(jié)合的項目,比如Chemical and Biological Engineering(愛荷華大學(xué))和Chemical and Biochemical Engineering(加州大學(xué)爾灣分校)。在開設(shè)化工的學(xué)校項目中有接近90%都開設(shè)碩士學(xué)位,接近30%學(xué)校只開設(shè)碩士,剩余大約10%學(xué)校只開設(shè)博士學(xué)位。這點源于化工有工科的屬性,偏應(yīng)用。
1.3常見化工分支
1.3.1 Catalysis and Reactions 催化和反應(yīng)
Understanding chemical reactions, developing better catalysts, and engineering reacting systems is a core component of chemical engineering. Research in this increasingly significant area includes biomass conversion to fuels and chemicals, electrochemical reactions, plasma chemistry, petroleum production, biochemical engineering, environmental catalysis, fuel cells, CO2 capture and conversion. We employ computational, experimental and modeling approaches, often in concert, to solve pressing societal problems.
理解化學(xué)反應(yīng),發(fā)展更好的催化劑和反應(yīng)工程系統(tǒng)是化學(xué)工程的一個核心組成部分。這個日益重要的研究領(lǐng)域包括生物質(zhì)轉(zhuǎn)化為燃料和化學(xué)品,電化學(xué)反應(yīng),等離子體化學(xué),石油生產(chǎn)、生化工程、環(huán)境催化、燃料電池,二氧化碳捕獲和轉(zhuǎn)換。我們使用計算,實驗和建模方法 ,來解決緊迫的社會問題。
1.3.2 Biomolecular Engineering生物分子工程
Biomolecular engineering takes a molecular-level approach to provide new capabilities and solve problems in the life sciences. For example, chemical engineers are developing lab-on-a-chip devices to do genetic analysis and biomolecule synthesis. We are improving drug delivery and medical imaging by studying how molecules move and distribute throughout the body. We are also studying how proteins interact with DNA and how ligand molecules interact with cellular receptors.
生物分子工程采用分子水平的方法提供新功能和生命科學(xué)解決問題。例如,化學(xué)工程師開發(fā)芯片實驗室設(shè)備做基因分析生物分子合成。我們正在改善藥物輸送和醫(yī)學(xué)成像研究分子如何移動和分發(fā)到全身。我們也研究蛋白質(zhì)與DNA和配體分子與細胞受體相互作用。
1.3.3 Cellular Engineering細胞工程
From using T-cells to fight cancer to using microbes to produce biofuels, cellular engineering is a growing area of chemical engineering research. Our department is also uncovering new cellular-level information – for example, how cellular signaling occurs or how cancer cells travel through the bloodstream – that can be used to fight diseases. This new knowledge can also be used in tissue engineering.
利用t細胞的抗癌利用微生物生產(chǎn)生物燃料, 細胞工程是化學(xué)工程的一個新興研究領(lǐng)域。我們部門也再發(fā)現(xiàn)新的信息,例如,細胞信號發(fā)生或癌細胞如何穿過血液——可以用來對抗疾病。這個新知識,也可用于組織工程。
1.3.4 Computing and Simulation計算和模擬
Many research groups in our department use advanced scientific computing and molecular simulation as tools for elucidating chemical, physical and biological fundamentals. For example, we are examining the formation and fate of nanoparticles in the environment, chemical reactions occurring on catalyst surfaces, cellular signaling, polymer rheology, low temperature plasmas and nano-scale self assembly of particles with different geometries.
我們部門的許多研究小組使用先進的科學(xué)計算和分子模擬作為工具,闡明化學(xué)、物理和生物學(xué)基礎(chǔ)。例如,我們正在研究環(huán)境中的納米粒子的形成和命運,化學(xué)反應(yīng)發(fā)生在催化劑表面,細胞信號、聚合物流變學(xué)、低溫等離子體和納米粒子的自組裝不同的幾何圖形。
1.3.5 Nanotechnology納米科技
With our long history in heterogeneous catalysis and surface science, Michigan chemical engineers have been using nanotechnology well before it became a buzzword. New tools allow even better control of nanoparticle growth, shape and properties – and better characterization of the final products. We are developing nanotubes, nanoprobes, nanomaterials, nanocatalysts and nanostructures for a variety of applications in energy conversion, medicine and electronics, for example. Our faculty and students apply both state-of-the-art experimental techniques and sophisticated computational approaches.
在多相催化和表面科學(xué)的悠久歷史中, 密歇根大學(xué)的化學(xué)工程師很早之前就一直在使用納米技術(shù)。新工具允許更好的控制納米粒子的增長,形狀和屬性,和更好的最終產(chǎn)品的特征。nanoprobes我們正在開發(fā)納米管, 納米探針,納米材料, 納米催化劑,和納米結(jié)構(gòu)在能量轉(zhuǎn)換,醫(yī)學(xué)和電子產(chǎn)品中的不同應(yīng)用。我們的教師和學(xué)生運用十分先進的實驗技術(shù)和復(fù)雜的計算方法。
1.3.6 Materials 材料
New catalysts for biomass conversion, new sorbents for CO2 capture or H2 storage, self assembly of nanoscale building blocks to make new materials, new biomaterials for medical devices, new electrode materials for batteries and new membranes are among the topics being explored in the Chemical Engineering Department. We develop and employ both computational and experimental approaches.
新的生物質(zhì)轉(zhuǎn)化催化劑,新的二氧化碳捕獲或氫氣儲存,吸著劑自組裝納米構(gòu)件制造新材料、新的醫(yī)療器械生物材料,新的電池電極材料和新膜在化工部門探討的主題。我們開發(fā)和采用計算和實驗方法。
1.3.7 Polymers and Complex Fluids 高分子聚合物和復(fù)雜流體
Polymers are ubiquitous in modern life, as are complex fluids – soft materials with properties between those of liquids and solids. Researchers in the Chemical Engineering Department are developing polymer films for use in energy conversion, new polymers for flexible solar cells, membranes and medical devices, and polymer coatings that change properties when exposed to stimuli. The research in this area includes rheology studies, molecular simulation, colloid self-assembly, gelation and percolation.
聚合物在現(xiàn)代生活中無處不在,復(fù)雜流體–具有在液體和固體之間的特性的軟質(zhì)材料。 化學(xué)工程系的研究人員正在開發(fā)用于能量轉(zhuǎn)換的聚合物薄膜,用于柔性太陽能電池,薄膜和醫(yī)療設(shè)備的新型聚合物,以及在受到刺激時會改變性能的聚合物涂層。 該領(lǐng)域的研究包括流變學(xué),分子模擬,膠體自組裝,凝膠化和滲濾。
1.3.8 Sustainable Energy 可持續(xù)能源
From energy-harvesting textiles to better batteries and solar cells, the Chemical Engineering Department is doing the research that will enable increased use of renewable energy sources. For example, we are working on new thermochemical and biochemical pathways to renewable liquid biofuels and also examining how they perform in an engine. We are making new materials for hydrogen storage and for electrocatalysis. We are also doing fundamental and applied research related to electrochemical systems for energy storage and energy conversion.
從能量收集紡織品到更好的電池和太陽能電池,化學(xué)工程系正在進行的研究將使可再生能源的使用增加。 例如,我們正在研究通往可再生液體生物燃料的新熱化學(xué)和生化途徑,并研究它們在發(fā)動機中的性能。 我們正在制造用于儲氫和電催化的新材料。 我們還在進行與電化學(xué)系統(tǒng)相關(guān)的基礎(chǔ)和應(yīng)用研究,以進行能量存儲和能量轉(zhuǎn)換。
1.3.9 Product and Process Systems Engineering產(chǎn)品和過程系統(tǒng)工程
The primary objective is to develop computational methodologies and tools to assist the process and related industries involving change at a molecular level to develop and to optimise system performance, and make better use of resources in a safe and sustainable manner. Our core competencies lie in modelling and model solution tools, process operations and control, product and process design and scientific computation. General methodologies are being developed based on advances in modelling tools, optimisation techniques, non-linear analysis, data analysis and visualisation.
主要目標是開發(fā)計算方法和工具,以協(xié)助涉及分子變化的過程和相關(guān)行業(yè)開發(fā)和優(yōu)化系統(tǒng)性能,并以安全和可持續(xù)的方式更好地利用資源。 我們的核心競爭力在于建模和模型解決方案工具,流程操作和控制,產(chǎn)品和流程設(shè)計以及科學(xué)計算。 基于建模工具,優(yōu)化技術(shù),非線性分析,數(shù)據(jù)分析和可視化的進步,正在開發(fā)通用方法。